本文共 1395 字,大约阅读时间需要 4 分钟。
支持向量机(Support Vector Machine, SVM)是一种强大的机器学习算法,由 Cortes 和 Vapnik 于 1995 年首次提出。它在小样本、高维、非线性分类问题上表现突出,同时也可扩展到函数拟合等领域,具有广泛的应用价值。
在二维空间中,支持向量机通过寻找最大间隔直线将数据分隔开。该直线与训练样本尽可能远,同时只包含极少数支持向量(即该直线上的一点),这是 SVM 中的核心思想。
通过将数据分布绘制出来,可以直观地观察到这一过程。原始数据点分布在平面上,支持向量位于分隔直线上。随着数据分布的变化,分隔直线的位置和方向也会调整,以达到最优 separating hyperplane。
SVM的主要步骤如下:
这一系列步骤确保了 SVM 的鲁棒性和泛化能力。
以下是基于 MATLAB 的 SVM 代码示例:
% 加载数据sh = dlmread('yahoo.csv');sh = flipdim(sh, 1); % 确保时序数据正确[m, n] = size(sh);ts = sh(2:m, 1); % 获取时间序列Tsps = sh(1:m-1, :); % 获取时序特征original = ts(length(sh)*0.7 + 1:end, :); % 提取数据% 绘制原始数据图figure;plot(ts, 'LineWidth', 1);title('Yahoo 股价(1996.4.12-2012.11.16) before Mapping', 'FontSize', 12);grid on;fprintf('展示股票价格前映射图。\n');fprintf('程序暂停,按下回车继续。\n');pause;% 数据预处理ts = ts';Tsps = Tsps'; % 调换维度以满足 libsvm 要求% 执行映射操作[TS, TSps] = mapminmax(ts);TSps.ymin = 1; TSps.ymax = 2;[TS, TSps] = mapminmax(ts, TSps);TS = TS'; % 调换维度% 输出结果fprintf('\n 初始化中.....\n');TS = TS';[TSX, TSXps] = mapminmax(tsx);TSXps.ymin = 1; TSXps.ymax = 2;[TSX, TSXps] = mapminmax(tsx, TSXps);TSX = TSX';
代码实现了从数据加载、预处理到模型训练的完整流程。通过 mapminmax
逐步归一化数据范围。
训练完成后,模型对新数据集的分类准确率显著高于其余算法。图表显示结果符合预期,即模型能够准确地从训练集中学习到分类边界。
版本:2014a
完整代码或代写请联系QQ: 912100926转载地址:http://bqjrz.baihongyu.com/